Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The characterization of young planets (<300 Myr) is pivotal for understanding planet formation and evolution. We present the 3–5μm transmission spectrum of the 17 Myr, Jupiter-size (R∼10R⊕) planet, HIP 67522b, observed with JWST NIRSpec/G395H. To check for spot contamination, we obtain a simultaneousg-band transit with the Southern Astrophysical Research Telescope. The spectrum exhibits absorption features 30%–50% deeper than the overall depth, far larger than expected from an equivalent mature planet, and suggests that HIP 67522b’s mass is <20M⊕irrespective of cloud cover and stellar contamination. A Bayesian retrieval analysis returns a mass constraint of 13.8 ± 1.0M⊕. This challenges the previous classification of HIP 67522b as a hot Jupiter and instead, positions it as a precursor to the more common sub-Neptunes. With a density of <0.10 g cm−3, HIP 67522 b is one of the lowest-density planets known. We find strong absorption from H2O and CO2(≥7σ), a modest detection of CO (3.5σ), and weak detections of H2S and SO2(≃2σ). Comparisons with radiative-convective equilibrium models suggest supersolar atmospheric metallicities and solar-to-subsolar C/O ratios, with photochemistry further constraining the inferred atmospheric metallicity to 3 × 10 solar due to the amplitude of the SO2feature. These results point to the formation of HIP 67522b beyond the water snowline, where its envelope was polluted by icy pebbles and planetesimals. The planet is likely experiencing substantial mass loss (0.01–0.03M⊕Myr−1), sufficient for envelope destruction within a gigayear. This highlights the dramatic evolution occurring within the first 100 Myr of its existence.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            null (Ed.)Chromospheric Ca II activity cycles are frequently found in late-type stars, but no systematic programs have been created to search for their coronal X-ray counterparts. The typical time scale of Ca II activity cycles ranges from years to decades. Therefore, long-lasting missions are needed to detect the coronal counterparts. The XMM-Newton satellite has so far detected X-ray cycles in five stars. A particularly intriguing question is at what age (and at what activity level) X-ray cycles set in. To this end, in 2015 we started the X-ray monitoring of the young solar-like star ɛ Eridani, previously observed on two occasions: in 2003 and in early 2015, both by XMM-Newton . With an age of 440 Myr, it is one of the youngest solar-like stars with a known chromospheric Ca II cycle. We collected the most recent Mount Wilson S-index data available for ɛ Eridani, starting from 2002, including previously unpublished data. We found that the Ca II cycle lasts 2.92 ± 0.02 yr, in agreement with past results. From the long-term XMM-Newton lightcurve, we find clear and systematic X-ray variability of our target, consistent with the chromospheric Ca II cycle. The average X-ray luminosity is 2 × 10 28 erg s −1 , with an amplitude that is only a factor of 2 throughout the cycle. We apply a new method to describe the evolution of the coronal emission measure distribution of ɛ Eridani in terms of solar magnetic structures: active regions, cores of active regions, and flares covering the stellar surface at varying filling fractions. Combinations of these three types of magnetic structures can only describe the observed X-ray emission measure of ɛ Eridani if the solar flare emission measure distribution is restricted to events in the decay phase. The interpretation is that flares in the corona of ɛ Eridani last longer than their solar counterparts. We ascribe this to the lower metallicity of ɛ Eridani. Our analysis also revealed that the X-ray cycle of ɛ Eridani is strongly dominated by cores of active regions. The coverage fraction of cores throughout the cycle changes by the same factor as the X-ray luminosity. The maxima of the cycle are characterized by a high percentage of covering fraction of the flares, consistent with the fact that flaring events are seen in the corresponding short-term X-ray lightcurves predominately at the cycle maxima. The high X-ray emission throughout the cycle of ɛ Eridani is thus explained by the high percentage of magnetic structures on its surface.more » « less
- 
            We report the discovery of a complete Einstein ring around the elliptical galaxy NGC 6505, atz = 0.042. This is the first strong gravitational lens discovered inEuclidand the first in an NGC object from any survey. The combination of the low redshift of the lens galaxy, the brightness of the source galaxy (IE = 18.1 lensed,IE = 21.3 unlensed), and the completeness of the ring make this an exceptionally rare strong lens, unidentified until its observation byEuclid. We present deep imaging data of the lens from theEuclidVisible Camera (VIS) and Near-Infrared Spectrometer and Photometer (NISP) instruments, as well as resolved spectroscopy from theKeckCosmic Web Imager (KCWI). TheEuclidimaging in particular presents one of the highest signal-to-noise ratio optical/near-infrared observations of a strong gravitational lens to date. From the KCWI data we measure a source redshift ofz = 0.406. Using data from the Dark Energy Spectroscopic Instrument (DESI) we measure a velocity dispersion for the lens galaxy ofσ⋆ = 303 ± 15 km s−1. We model the lens galaxy light in detail, revealing angular structure that varies inside the Einstein ring. After subtracting this light model from the VIS observation, we model the strongly lensed images, finding an Einstein radius of 2.″5, corresponding to 2.1 kpc at the redshift of the lens. This is small compared to the effective radius of the galaxy,Reff ∼ 12.″3. Combining the strong lensing measurements with analysis of the spectroscopic data we estimate a dark matter fraction inside the Einstein radius offDM = (11.1−3.5+5.4)% and a stellar initial mass-function (IMF) mismatch parameter ofαIMF = 1.26−0.08+0.05, indicating a heavier-than-Chabrier IMF in the centre of the galaxy.more » « lessFree, publicly-accessible full text available February 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
